r

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPCSEZS [\

JOCUMENTATION PAGE

PO A0DI0VET Cj\
OME no 00ns CIEF

3 - IR oy AETi e D AR Aqs N L D RO L LG T TR T R T e e e T e
SOT DTGNS D AN rRy A AT TRe T THETLES TY ATOOMAEDS SeNG (rMeny rager g m e e T e

L oAwmis ey

et

: ' o - ST eGUANT TRy L TERT L AR nOION e aTOUd TN SR ICeY L. 1eTTrgLe Y s Al iy e A
““‘Il” *' Ir!lzm “I' “ l} “lY ‘“ ‘“1 JiNI0L ANGID INA D et Rlang i ement 500 1 G0 YIDB e e RRQUITor Vese DT o Tt gy g0 e
L I Ii ’%i} I “ ; ok]2 REPORT DATE 3 REPORT TYPE AND DATES COVERID

April 12, 1993

wad 47 Gurl-50 00, a3

4. TITLE AND SUBTITLE

Domain Specific Software Architectures

Accelerating the Transfer of Technology for Implementing

6. AUTHOR(S)

Vincent P. Heuring and William M. Waite

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Boulder, CO 80309-0425

S, FUNDING NJUMBERS

ARo7Z5¢C

clma

PORT BER
University of Colorado Boulder
Department of Electrical and Computer Engineering ELECTE
Campus Box 425 HAYI 0 1993

. RF ING ORGANIZATION

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. NSORING
NCY REPORT NUMBER

DAALOZ-F1-G -0203

ITORING

11. SUPPLEMENTARY NOTES

[72a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
osition, policy, or decision, unless so designated by other documentation.

12b. DISTRIBUTION COOE

13. ABSTRACT (Maximum 200 words)

by NPS personnel.

and explaining specifications.

The purpose of the research effort was to find one or more clients within the DOD com-
munity to help evaluate the Eli system when applied to problems of interest to the DOD.
We solicited information from a number of DoD agencies, and finally formed a relation-
ship with a group at the Naval Postgraduate School (NPS). As a result of that relation-
ship, we have developed a formal specification for the NPS language, PSDL, using the
Eli system. That specification has been subsequently modified by NPS personnel whom
we trained in the use of the ELi system, and the resulting PSDL translator is being used

The research also led to further modifications to the Eli system. We were able to add a
“‘literate programming’’ tool to Eli that has proven to be a significant aid in organizing

14. SUBJECT TERMS

15. NUMBER OF PAGES

5

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION]19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

OF ABSTRACT
UNCLASSIFIED UL

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Stangarg Form 298 (Rev 2-89)
Oms":oﬁc ny AaNS: St 291§

AU

1. Summary

Our objective was to locate and evaluate several potential customers for the Eh
system,x demonstrate how this technology could improve their productivity, and provide
the information and training needed for them to make effective use of it. We hoped to
complete one pilot project in order to gain credibility for the technology so that another
of the potential customers would be willing to participate in and support a second pilot
project.

We solicited information from a number of DoD agencies, and finally formed a
relationship with a group at the Naval Postgraduate School (NPS). This group is
developing an approach to rapid prototyping of real-time systems, using a language
called PSDL.? They needed a translator from PSDL to Ada that could be constructed
quickly, and would be flexible enough to accommodate changes in both PSDL and the
mapping from PSDL to Ada. Eli is ideally suited to this task, and the NPS group was not
satisfied with the other tools they had investigated.

The cooperation began in the fall of 1991, when the NPS group provided us with
their current grammar for PSDL and an account on their computer. That grammar and
reference 2 were the only available description of PSDL. Our first task was to under-
stand PSDL and try to formalize that understanding using Eli. This task involved study-
ing the documents, formulating hypotheses, and verifying those hypotheses via electronic
mail. Our NPS contact was L1. Charles Altizer, a naval instructor employed on the pro-
ject.

By late spring of 1992, we had completed the first task. The formalization of
PSDL had uncovered several inconsistencies in the language, and these had been
corrected in consultation with the NPS group. We had implemented the Eli system on
the NPS machine, and Lt. Altizer had begun to familiarize himself with the documenta-
tion. The NPS group invited Prof. Waite to spend a week in Monterey to provide hands-
on instruction in the use of Eli. Due to scheduling conflicts, this visit could not be made
until the week of July 13-17.

During his visit, Prof. Waite demonstrated Eli. Then he and Lt. Altizer went
through a case study involving a part of the translation, with Prof. Waite demonstrating
the implementation techniques in the course of creating that part of the translator. After
that part had been completed, Lt. Altizer embarked upon another part under Prof. Waite’s
supervision. Finally, Lt. Altizer implemented yet a third part of the translator with only
minimal aid.

Lt. Altizer continued the translator implementation during the fall of 1992, with
consultation on problems via electronic mail. In January of 1993, he spent a week in
Boulder working with several members of the Eli group on a particularly subtle part of
the translation.

We believe that the pilot study involving NPS was successful. The technology was
shown to be appropriate for the problem, and the NPS group was able to effectively use
that technology to solve the problem. Feedback on certain difficulties with large
specifications led to incorporation of a new ‘‘literate programming’’ tool into the Eli sys-
tem. This tool is proving to be a significant aid in organizing and explaining

93-09703

93 5 04 254 IRV A

specifications.

2. The PSDL Project

PSDL is a specification language that supports rapid prototyping of real-time sys-
tems. A user specifies the desired real-time system via a set of operators, where each
operator is either implemented in Ada or described in PSDL. Properties and assertions
can be associated with each operator and usel to search a software data base for
appropriate implementations. A graphical editor is used to construct and update PSDL
descriptions presented in the form of directed graphs.

The user’s specification is reduced to a flat, directed graph by other components of
the rapid-prototyping system. Each node in the graph represents an instance of a primi-
tive operator that is available in Ada and stored in the software data base. Each arc in the
graph represents a stream of data items. This must be converted to an Ada specification
that describes the interconnections, triggering conditions, input/output operations and
module invocations necessary to simulate the specified real-time system. The resulting
Ada specification i< then compiled to obtain a running simulator.

Conversion of the flat graph to an Ada specification is a compilation problem: The
graph must be checked for consistency, associations between formal parameters and
arguments must be established, and Ada text produced. This problem is not well defined
because the entire system is evolving. Despite its ill-defined nature, it must be solved if
progress is to be made. Without the ability to convert flat graphs to Ada specifications, it
is impossible to create running simulators.

The notation for describing the flat graph is quite stable. Its structure and context
conditions will probably not change radically. The appropriate Ada specification for a
given flat graph is less certain. Thus the translator that converts a graph to an Ada
specification must be easily altered when changes to the form of the output specification
are proposed.

During the first part of this project, our group constructed a specification to
describe the lexical and syntactic structure of PSDL. We also provided specifications for
context conditions on operators, but did not deal with the data type identifiers. All of this
work was done in consultation with the NPS group, since some of the language definition
existed only in the minds of the designers. Thus, in addition to providing the basis of a
translator, these specification files became the official description of PSDL itself.

There is no written description of the mapping from PSDL to Ada, nor is there any
but a fragmentary description of the PSDL typing mechanism. We could not, therefore,
provide much support for these aspects of the language. We therefore used the
specifications that we had developed as a teaching tool and a point of departure for
transferring the technology to the NPS group. Our strategy was to use the constructs we
had described as case studies, having the NPS group explain the equivalent Ada
specification for each and then implementing the translation rules to produce that
equivalent Ada specification. Prof. Waite implemented the first such case study, care-
fully explaining the rationale to Lt. Altizer as he wrote the rules, and answering all of the
questions that came up in the process. The second case study was implemented by Lt.
Altizer, with Prof. Waite asking questions and providing guidance. Lt. Altizer then

bution f

Avalabiity Coddq

- VA PRV 5 D‘S

R

[P

e e g oo

i Avail andfor

{ Soecisi

|

implemented the third case study with minimal interaction from Prof. Waite.

The remainder of the project was carried out by Lt. Altizer with consultation via
electronic mail. At one point the sophistication of the translation was pushing the capa-
bilities of Eli and Lt. Altizer spent a week in Boulder working with several members of
the group. This visit resulted in new perspectives on one component of Eli, and an
elegant solution to the problem of mapping PSDL types to Ada.

3. Changes to Eli

Several changes to the Eli system and its documentation were made as a result of
our experiences with PSDL and the Naval Postgraduate School. The most important was
our inclusion of a tool that allows us to combine specifications of different types in a sin-
gle file. A specificaticn that solves a problem like the PSDL translation problem can be
understood only if it is decomposed according to task: Each subtask is specified
separately. Unfortunately, a single task usually involves several different kinds of
specification, each of which is relatively small. Thus the number of small files increases
rapidly under this sort of decomposition. When a change is needed, related changes must
be made in a number of files, and maintenance of the specification becomes a nightmare.

The tool we used to solve this problem is called FunnelWeb. It was developed in
Australia, and is an implementation of Knuth’s ‘‘literate programming’’ paradigm‘g'*'4
Unlike most such tools, FunnelWeb allows one to produce many different files from a
single description. That means we can gather together all of the small specifications of
different kinds that relate to a single task into a single file for that task. When a change is
required, only one file is involved instead of many.

FunnelWeb also gives Eli the ability to construct formatted text files from the
specifications. Using FunnelWeb, the PSDL specification can be written in such a way
as to serve both as a human-readable definition of the language and mapping, and as the
source from which the processor itself is generated. This makes it considerably easier to
keep the language definition and the translator consistent, and to guarantee a complete
language definition.

The other changes occurred in the documentation. A number of clarifications were
necessary, and a major re-orientation of the discussion of overload resolution was
required. PSDL is the first language that we had encountered that needed to distinguish
many instantiations of a particular abstract data type symbolically. (This was necessary
in order to produce the Ada specification.) Although we were able 10 devise an elegant
solution with the existing mechanisms, that solution was virtually impossible to see given
the available documentation.

4. References

1. R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane and W. M. Waite, ‘Eli: A
Complete, Flexible Compiler Construction System’, Communications of the ACM,
35, 121-131 (February 1992).

Luqgi, V. Berzins and R. T. Yeh, ‘A Prototyping Language for Real-Time
Software’, IEEE Transactions on Software Engineering, 14, 1409-1423 (October
1988).

D. E. Knuth, ‘Literate Programming’, The Computer Journal, 27, 97-111 (1984).

L. M. C. Smith and M. H. Samadzadeh, ‘An Annotated Bibliography of Literate
Programming’, SIGPLAN Notices, 26, 14-20 (January 1991).

